oncoExTra™

Report Date: MM/DD/YYYY

Patient:	Sample Patient	Ordering Client:	Medical Center		Results Snapshot
Sex at Birth:	Female	Specimen Type:	FFPE Block		Analytes sequenced: DNA+RNA
DOB:	MM/DD/YYYY	Specimen Site:	Colon		Actionable Targets: 2
Medical Record #:	MR 000000	Tumor Collection Date:	MM/DD/YYYY		TMB: Low
Client Accession #:	CA 000000	Normal Collection Date:	MM/DD/YYYY		MSI: Stable
Ordering Physician:	Sample Physician	Received Date:	MM/DD/YYYY	L	

Diagnosis: Metastatic malignant neoplasm of sigmoid colon

KEY BIOMARKER FINDINGS							
KEY BIOMARKERS	FDA-APPROVED DRUGS -for patient's cancer ¹	FDA-APPROVED DRUGS -for another cancer ¹	DRUGS PREDICTED NON-BENEFICIAL/ REDUCED BENEFIT	POTENTIAL CLINICAL TRIALS			
CTNNB1 (S23_D32delinsN)		$\mathbf{O}\mathbf{V}$		Yes			
KRAS (A146T)		X	cetuximab, panitumumab	Yes			
	TUMOR	MUTATION BURDE	N (TMB)				
LOW (3 mut/Mb)				No			
MICROSATELLITE STATUS (MSI)							
STABLE				No			

As part of the OncoExTra test, key biomarkers relevant in the patient's tumor type have been assessed: **NTRK1, NTRK2, NTRK3, RET, BRAF, ERBB2, KRAS, NRAS**. If clinically pertinent event(s) in these biomarkers have been identified, the biomarker(s) will appear within the 'Key Biomarker Findings' section of the report. If Biomarkers from this list do not appear, clinically pertinent event(s) have not been identified or fell outside of the OncoExTra reporting thresholds (please see Disclaimer Limitations information).

¹The prescribing information for the FDA-approved therapeutic option may not include the associated Key Biomarker.

Genomic Alterations Detail

Genomic Alteration			Therapeutic Implication		
Alteration:	CTNNB1 (S23_D32delinsN)	Drug	Status		
Alteration Type:	Inframe Deletion				
Coordinate:	chr3:41266070	See Clinical Trials Section			
Allele Frequency:	31%				
Transcript ID:	ENST00000349496				
Origin:	DNA				
Read Depth:	651				
Location:	3/15				

Biomarker Summary

The catenin beta 1 (CTNNB1) gene encodes the protein beta-catenin, a key mediator of WNT signaling, as WNT activation induces stabilization of beta-catenin (Schneikert J and Behrens J, 2007; PMID: 16840506). The beta-catenin protein plays a critical role in formation of adherens junctions (AJs), which is required for the regulation of cell-cell adhesion (Tanabe S et al., 2016; PMID: 27574551). In colorectal cancer (CRC), it has been reported that membranous beta-catenin expression was statistically reduced in the invasive front (IF). Also, loss of membranous beta-catenin in the tumor center (TC) was more common among N2 tumors. Further, expression of beta-catenin in TC and IF, and their mean, was associated with longer disease-free survival (DFS) among CRC patients. Additionally, multivariate analysis suggested that tumor stage and mean beta-catenin expression were prognostic for longer DFS (hazard ratio=0.33; p=0.01) (Kamposioras K et al., 2013; PMID: 24123033). Mutations at the phosphorylation sites or loss of exon 3 in CTNNB1 are associated with increased betacatenin protein stability and activation of the Wnt pathway (Polakis P, 1999; PMID: 10072352, Abraham SC et al., 2002; PMID: 11943721, Tanaka Y et al., 2001; PMID: 11731417, Takahashi Y et al., 2006; PMID: 16523258, Notani D et al., 2010; PMID: 20126258, Lévy L et al., 2004; PMID: 15060161). There are no approved therapies targeting CTNNB1 mutation, but WNT pathway inhibitors are in clinical trials for solid tumors (Tanwar PS et al., 2011; PMID: 21695255, Kogan Y et al., 2012; PMID: 22356261, Lachenmayer A et al., 2012; PMID: 22811581, Zhu Jet al., 2012; PMID: 22964660). Studies suggest that tumors with CTNNB1 mutations may also respond to sorafenib by inhibiting signaling through the WNT/beta-catenin pathway. In these tumors, sorafenib decreased the beta-catenin protein levels, and reduced liver-related Wnt target genes in experimental models (Lachenmayer A et al., 2012; PMID: 22811581). In a different study, a combination of sorafenib and beta-catenin inhibitor was suggested to be effective in suppressing Wnt-driven tumor cell proliferation (Muche S et al., 2014; PMID: 25202044). Pre-clinical studies have also shown that CTNNB1-mutant cancers have an increased sensitivity for tyrosine kinase inhibitors and the BCL2 inhibitor navitoclax (Zaman GJR et al., 2017; PMID: 28751540, Delgado E et al., 2015; PMID: 25457204, Basu A et al., 2013; PMID: 23993102).

Molecular Function

CTNNB1 (S23_D32delinsN) is an inframe deletion in exon 3, which lies within the ubiquitination recognition motif of the Ctnnb1 protein from amino acids 23 to 32 (AI-Fageeh M et al., 2004; PMID: 15064718). This inframe deletion has not been functionally characterized and hence, its impact on Ctnnb1 protein remains unclear. However, mutations in exon 3 (at specific codons 32, 33, 37, 41 and 47) leading to loss of phosphorylation sites, or in-frame deletions leading to loss of exon 3, can eliminate the phosphorylation sites, resulting in failure of the β -catenin protein to be targeted for proteasomal degradation (Gao C et al., 2017; PMID: 29435196). The S23 is one of the phosphorylation sites for GSK-3 β , and alterations at S23, S23R, have been reported to result in enhanced Wnt transcription activity by 2.36 ± 1.01 fold compared to the wild type CTNNB1 control (Manring HR and Antinozzi PA., Cancer Res 2012;72(8 Suppl):Abstract# 2249). Also, other in vitro studies have shown that the related W25_D32del is predicted to confer a gain of function to the Ctnnb1 protein, as demonstrated by nuclear accumulation of Ctnnb1 (Takayasu H et al., 2001; PMID: 11309340, Wei Y et al., 2000; PMID: 10698519).

Patient:	Sample Patient	Medical Record #:	MR 000000	ΕΥΛΟΤ
Sex at Birt	h:Female	Client Accession #:	CA 000000	
DOB:	MM/DD/YYYY	Ordering Physician:	Sample Physician	SCIENCES

G	enomic Alteration	Therapeutic Implication		
Alteration:	KRAS (A146T)	Drug	Status	
Alteration Type:	Missense	cetuximab (Erbitux)	PREDICTED NON-BENEFICIAL/	
Coordinate:	chr12:25378562		REDUCED BENEFIT	
Allele Frequency:	64%	panitumumab (Vectibix)	PREDICTED NON-BENEFICIAL/	
Transcript ID:	ENST00000256078		REDUCED BENEFIT	
Origin:	DNA			
Read Depth:	2052			
Location:	4/6			

Biomarker Summary

The KRAS proto-oncogene, GTPase (KRAS) gene encodes a member of the small GTPase superfamily and a key regulator of the MAPK, PI3K/AKT/mTOR pathways (di Magliano MP and Logsdon CD., 2013; PMID: 23622131). KRAS protein transduces signals by activating the RAF/MEK/ERK and PI3K/mTOR signaling cascade, thereby regulating cell proliferation, survival and differentiation (Pylayeva-Gupta Y et al., 2011; PMID: 21993244, Colicelli J et al., 2004; PMID: 15367757). KRAS is one of the most frequently mutated oncogenes in human cancers (Kortüm KM et al., 2015; PMID: 25743686, Lohr JG et al., 2014; PMID: 24434212). Oncogenic KRAS mutations are known to block EGFR signaling and mediate resistance to EGFR monoclonal antibodies therapy in colorectal cancers (CRC) (Amado RG et al., 2008; PMID: 18316791, Bokemeyer C et al., 2011; PMID: 21228335, Peeters M et al., 2010; PMID: 20921462), and EGFR tyrosine kinase therapy in non-small cell lung cancer (NSCLC) (Riley GJ et al., 2008; PMID: 18832458). Based on clinical guidelines for colon and rectal cancers, patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with anti-EGFR monoclonal antibodies (cetuximab and panitumumab) (Van Cutsem E et al., 2011; PMID: 21502544, Douillard JY et al., 2013; PMID: 24024839, Zill OA et al., 2018; PMID: 29776953). The use of MEK inhibitors is predicted to be beneficial in tumors with KRAS mutations (Gilmartin AG et al., 2011; PMID: 21245089). However, clinical studies have suggested limited efficacy of MEK inhibitors in KRAS-mutated tumors. Hence, combinations of MEK inhibitors with other targeted therapies have been suggested to address the limited efficacy observed in these tumors (Adjei A et al., 2008; PMID: 18390968, Infante J et al., 2014; PMID: 24915778, Lito P et al., 2014; PMID: 24746704, Hochster HS et al., 2015; PMID: 25322874, Blumenschein GR et al., 2015; PMID: 25722381, Zhu Z et al., 2014; PMID: 24444711). A Phase 2 trial of selumetinib (a MEK inhibitor) in patients with KRAS-mutant, progressing CRC on first-line therapy reported PR and SD for four weeks in 3/31 and 16/31 of patients, respectively; notably, 3 patients were reported to have SD lasting for >1 year (Hochster HS et al., 2015; PMID: 25322874). A Phase 2 trial of temsirolimus (monotherapy or in combination with irinotecan) in patients with KRAS-mutant CRC reported SD in 24/64 and 40/63 patients, respectively; all responders had low levels of mutant KRAS in plasma samples (Spindler KL et al., 2013; PMID: 23514584). A Phase 2 study comparing selumetinib vs capecitabine in CRC patients reported SD in 10/34 of patients in the selumetinib group compared to 15/35 in the capecitabine group (Bennouna J et al., 2011; PMID: 20127139). Pre-clinical studies have reported that treatment of KRAS-mutant CRC models with MEK inhibitor (binimetinib or trametinib) combined with a Cdk4/6 inhibitor (palbociclib) resulted in greater tumor inhibition in vitro and in vivo in CRC cell lines and PDX models, than either treatment alone (Ziemke EK et al., 2016; PMID: 26369631, Lee MS et al., 2016; PMID: 27167191).

Molecular Function

KRAS (A146T) is missense mutation in exon 4, which lies within a GTP binding region of the Kras protein (Cai X et al., 2014; PMID: 24760004). Mutations of this residue presumably alter the local structure such that the GTP-bound state is much favored over GDP-bound form. In vitro and in vivo models have demonstrated the transforming capability of the KRAS A146T allele, although at lower efficiency compared with Kras codon 12 and 13 mutations (Edkins S et al., 2006; PMID: 16969076). Additionally, A146T results in impaired GTPase activity, increased intrinsic and GEF-mediated nucleotide exchange rate which results in the accumulation of GTP-bound Kras, increased phosphorylation of Mek, Erk, and Akt and therefore is transforming in cell culture and promoting tumor formation in mouse models (Poulin EJ et al., 2019; PMID: 30952657, Tyner JW et al., 2009; PMID: 19075190, Janakiraman M et al., 2010; PMID: 20570890, Weißbach S et al., 2020; PMID: 32079091). Pre-clinical evidence suggests that KRAS exon 4 mutations may predict sensitivity to MEK inhibition and resistance to EGFR-targeted inhibitors. Sensitivity to MEK inhibition leading to growth suppression is thought to occurs via downregulation of cyclin D1, increase in p27 expression, and hypo-phosphorylation of RB1 (Janakiraman M, 2010; PMID: 20570890). In a phase III trial, low-grade serous ovarian carcinoma patients harboring a KRAS mutation had 3.4 times the odds of responding to treatment with binimetinib, as compared to patients without KRAS mutation (Grisham RN et al., JCO.2021.39.15_suppl.5519).

Patient:	Sample Patient	Medical Record #:	MR 000000	FYA
Sex at Bir	rth:Female	Client Accession #:	CA 000000	
DOB:	MM/DD/YYYY	Ordering Physician:	Sample Physician	SCIE

Drug Evidence Detail

Literature Supporting Therapeutic Implication

Drug	Biomarker	Therapeutic Implication
cetuximab (Erbitux)	KRAS (A146T)	PREDICTED NON-BENEFICIAL/
		REDUCED BENEFIT

A meta-analysis of 22 studies that include 2395 CRC patients treated with cetuximab and panitumumab suggests that mutations in KRAS exons 3 and 4, NRAS, BRAF and PIK3CA and non functional PTEN predict resistance to anti EGFR therapies. Mutations in KRAS exons 3 and 4, BRAF, PIK3CA and non-functional PTEN (mutations or loss of protein expression) significantly predicted poor ORR (OR = 0.26, OR = 0.29, OR = 0.39, and OR = 0.41, respectively). Significantly shorter PFS applied to mutations in KRAS exons 3 and 4 (HR = 2.19), NRAS (HR = 2.30) and BRAF (HR = 2.95) and non-functional PTEN (HR = 1.88). Significantly shorter OS applied to mutations in KRAS exons 3 and 4 (HR = 1.43) and alterations in PTEN (HR = 2.09).

https://www.ncbi.nlm.nih.gov/pubmed/24666267

(Therkildsen C et al., Acta Oncol. 2014 Jul;53(7):852-64)

A retrospective analyses of a large cell-free DNA (cfDNA) deep-sequencing data set of 70 cancer genes from 21,807 patients with treated, late-stage cancers across >50 cancer types revealed subclonal alterations and emerging resistance in 948 CRC samples that harbored the KRAS (AMP, A146P, A146S, A146T, A146V, A18D, A59T, D33E, F156V, G12A, G12C, G12D, G12R, G12S, G12V, G13C, G13D, K117N, L19F, Q22K, Q61H, Q61K, Q61L, Q61R, and V14I) and were associated with resistance to panitumumab and cetuximab.

https://pubmed.ncbi.nlm.nih.gov/29776953/

(Zill OA et al., Clin Cancer Res. 2018 Aug 1;24(15):3528-3538)

DrugBiomarkerTherapeutic Implicationpanitumumab (Vectibix)KRAS (A146T)PREDICTED NON-BENEFICIAL/
REDUCED BENEFIT

A meta-analysis of 22 studies that include 2395 CRC patients treated with cetuximab and panitumumab suggests that mutations in KRAS exons 3 and 4, NRAS, BRAF and PIK3CA and non functional PTEN predict resistance to anti EGFR therapies. Mutations in KRAS exons 3 and 4, BRAF, PIK3CA and non-functional PTEN (mutations or loss of protein expression) significantly predicted poor ORR (OR = 0.26, OR = 0.29, OR = 0.39, and OR = 0.41, respectively). Significantly shorter PFS applied to mutations in KRAS exons 3 and 4 (HR = 2.19), NRAS (HR = 2.30) and BRAF (HR = 2.95) and non-functional PTEN (HR = 1.88). Significantly shorter OS applied to mutations in KRAS exons 3 and 4 (HR = 1.78), NRAS (HR = 1.85), BRAF (HR = 2.52), PIK3CA (HR = 1.43) and alterations in PTEN (HR = 2.09).

https://www.ncbi.nlm.nih.gov/pubmed/24666267

(Therkildsen C et al., Acta Oncol. 2014 Jul;53(7):852-64)

A retrospective analyses of a large cell-free DNA (cfDNA) deep-sequencing data set of 70 cancer genes from 21,807 patients with treated, late-stage cancers across >50 cancer types revealed subclonal alterations and emerging resistance in 948 CRC samples that harbored the KRAS (AMP, A146P, A146S, A146T, A146V, A18D, A59T, D33E, F156V, G12A, G12C, G12D, G12R, G12S, G12V, G13C, G13D, K117N, L19F, Q22K, Q61H, Q61K, Q61L, Q61R, and V14I) and were associated with resistance to panitumumab and cetuximab.

https://pubmed.ncbi.nlm.nih.gov/29776953/

(Zill OA et al., Clin Cancer Res. 2018 Aug 1;24(15):3528-3538)

Patient:	Sample Patient	Medical Record #:	MR 000000	ΕΥΛΟΤ
Sex at Bi	rth:Female	Client Accession #:	CA 000000	
DOB:	MM/DD/YYYY	Ordering Physician:	Sample Physician	SCIENCES
		er aer nig i nijererani	Campio i infololati	JUENU

Clinical Trials Report

Potential trials based on genomic targets indicated in the OncoExTra[™] Report

Genomic Alterations	Targeted Investigational Agents	Trial IDs
CTNNB1 (S23_D32delinsN)	BCL2 inhibitors: (Venetoclax, Navitoclax [ABT-263], APG-1252), pan-CLK inhibitor: (SM08502), CTNNB1 inhibitors: (Tegatrabetan [Tegavivint, BC2059]), PORCN inhibitors: (LGK974, CGX1321, ETC-1922159 [ETC-159]), RAF inhibitors: (Sorafenib)	NCT02675946 NCT02521844
KRAS (A146T)	KRAS anti-sense: (AZD4785), KRAS inhibitor: (BI 170196), MEK inhibitors: (Binimetinib, Cobimetinib, Selumetinib, Trametinib, PD0325901, E6201, Refametinib [BAY 869766, BAY86-9766, RDEA119], Pimasertib [AS703026, MSC1936369B], HL-085), ERK inhibitors: (LY3214996, KO-947, LTT462, Ulixertinib [BVD-523, VRT752271], ASN007, MK-8353), RAF-MEK dual inhibitors: (RO5126766), Farnesyltransferase inhibitors: (Tipifarnib [Zarnestra, R115777], FTI-277), Focal adhesion kinase (FAK) inhibitors: (Defactinib)	NCT03340506 NCT03377361 NCT03520075 NCT02613650
	V /	

Disclaimer:

These clinical trial results were procured by keyword search on www.ClinicalTrials.gov, last updated on MM/DD/YYYY. The information contained in this site changes frequently and may be out of date. Search terms were based on alterations identified in the OncoExTra Report, drugs indicated in the OncoExTra Report, and the reported cancer type of the patient. The search strategy was not exhaustive and may not have retrieved every relevant trial for this patient. Healthcare professionals are encouraged to investigate other possibilities through additional searches at this site. The identified trials may have specific inclusion or exclusion criteria that would make a trial inappropriate for the patient. Consideration of any listed option should be made in the context of the patient's complete medical history.

Patient:	Sample Patient	Medical Record #:	MR 000000	EXACT
Sex at Birth	:Female	Client Accession #:	CA 000000	
DOB:	MM/DD/YYYY	Ordering Physician:	Sample Physician	SCIENCES

Report Date: MM/DD/YYYY

Variants of Unknown Significance

Alteration	Alteration Type	Allele Freq	Alteration	Alteration Type	Allele Freq
ACRBP (Q105L)	Missense	13	NRXN1 (G1171A)	Missense	27
ACTL9 (R35W)	Missense	27	OR51I1 (L224R)	Missense	27
AKR1D1 (R261H)	Missense	24	OR5B12 (R227C)	Missense	9
ANKRD13D (V123I)	Missense	26	OR6B1 (F209L)	Missense	20
	Missense	5	PCDHB15 (E203K)	Missense	27
ASTN2 (V57TI) $\Delta TP6V(0\Delta 2 (\Delta 292T)$	Missense	10	POLO (P456L) PDE3A	Amplification	21
BAHD1 (R613*)	Stop Gain	34	PHRF1 (A569S)	Missense	. 7
BRINP3 (F108V)	Missense	8	PIGA (R77*)	Stop Gain	58
C11orf63 (P241L)	Missense	31	PIK3C2G	Amplification	
CACNA1E (R2041*)	Stop Gain	42	PJA1 (C613Y)	Missense	27
CAMK1 (T28M)	Missense	65	PKM (D238N)	Missense	37
CAPZA3	Amplification		PLCZ1	Amplification	
CCDC135 (P759L)	Missense	25	PPPIR3G (A352V)	Missonso	19
CCIN (A200S)	Missense	5	RERGI	Amplification	
CDH8 (R4W)	Missense	26	RHOBTB1 (P389T)	Missense	27
CHST11 (E257K)	Missense	24	RICTOR (S1571L)	Missense	51
CNNM1 (E455*)	Stop Gain	33	RP11-296A16.1	Splice Donor Variant	36
CNPY1 (L63R)	Missense	20	(c.*1153_		
CNTNAP4 (1997T)	Missense	26	*1173+2delAGATATACC		
COL6A3 (A2536V)	Missense	37	AGACIACCICCIGI)	N 4:	04
	Missense	29	RTR2 (A24391)	Framashift	21
DGAT2L6 (A309T)	Missense	20	SIK2 (H134R)	Missense	20
DIP2B (V963G)	Missense	10	SI C12A3 (R943Q)	Missense	44
DLG4 (A257V)	Missense	21	SLC17A3 (G449R)	Missense	36
DMD (E1044Q)	Missense	6	SLC25A33 (G235É)	Missense	30
DMRTB1 (A27V)	Missense	6	SLC6A13 (R577Q)	Missense	15
DSG4 (R256K)	Missense	26	SLCO1C1 (S362R)	Missense	8
EDA2R (Q135K)	Missense	24	SNX29 (G336V)	Missense	21
	Splice Donor Variant	36	SPAIA6L (E114A)	Missense	(
			SPESPI (IZ30IS) SSTR3 (R334H)	Missense	30
EPS8 (E296fs)	Frameshift	28	STK11IP (S752E)	Missense	31
EPS8 (K301N)	Missense	28	SYPL2 (R9H)	Missense	33
EPS8	Breakpoint: Inversion		SYT6 (I384T)	Missense	25
ESR2 (A357V)	Missense	24	TCF20 (K1710R)	Missense	6
EZR (R526C)	Missense	25	TEKT4 (T141A)	Missense	6
FAM132A (A145V)	Missense	28	TRAF7 (T636M)	Missense	24
FAM135B (V8851)	Missense	19	TRPV4 (V562I)	Missense	24
FRN1 (T1200M)	Missense	38	TYK2 (C1140F)	Missense	20
FERD3L (A120V)	Missense	20	VCX3B	Deletion	20
FLRT2 (A591E)	Missense	38	ZC3H7B (E555A)	Missense	8
GAS7 (R16W)	Missense	23	ZEB2 (E1105K)	Missense	27
GYS2_BCAT1	Breakpoint: Deletion		ZFHX2 (A558T)	Missense	22
HCN4 (R378H)	Missense	35	ZNF160 (R521H)	Missense	17
HNRNPA2B1 (E/4G)	Missense	1/	ZNF502 (F5271)	Missense	62
IL 17 RB (133218)	Missense	21	ZNF340 (K3431) ZNF804R (N351T)	Missense	20
IQSEC3 (R429Q)	Missense	16	ZNF853 (R632H)	Missense	20
ITGA2B (C87*)	Stop Gain	20	ZNF880 (S519P)	Missense	15
ITGB1BP2 (E67A)	Missense	6			
KHDC3L (R30Q)	Missense	18			
KIF17 (V827M)	Missense	31			
KLHDC1 (S363Y)	Missense	19			
LRP1 (R1999H)	Missense	30			
MAPK6 (R3040)	Missense	20			
MARS2 (R556*)	Stop Gain	32			
MDFIC (E201K)	Missense	20			
MLH3 (Y1179H)	Missense	13			
MLXIPL (Q539H)	Missense	5			
MSR1 (V383I)	Missense	23			
MST1 (C183R)	Missense	57			
NCAM1 (R841Q)	Missense	30			
NIN $(V I / J NI)$	Missense	21			
NME7 (R1651)	Missense	17			
NPBWR2 (K257T)	Missense	13			
NPHS1 (L1240M)	Missense	15			
NRG3 (A34V)	Missense	25			

MR 000000 CA 000000 Sample Physician

Report Date: MM/DD/YYYY

General Information

Methodology:

OncoExTra Test is a Next Generation Sequencing tumor/normal exome and tumor RNA Seq assay that provides for the detection of substitutions, insertions, deletions, copy number events, and fusions in tumor tissue. MET exon 14 skipping, AR-v7, and EGFRvIII variants are also detected in RNA. Genomic DNA is extracted from the patient's normal and tumor samples. The isolated DNA is then prepared using a custom xGen target capture (IDT). This library preparation includes shearing, purification, adaptor ligation and PCR amplification. Total RNA is extracted from the patient's tumor sample. The isolated RNA is then prepared using KAPA HyperPrep with Riboerase (Kapa Biosystems). Libraries are then clustered on a flow cell and sequenced using the Illumina NovaSeq 6000.

Sequence data are analyzed using various validated bioinformatics tools and custom Next Generation Sequencing pipeline NG2-LDT 1.4.0. The reference genome assembly used for alignment is NCBI GRCh37. Each tumor's cancer-specific mutations are then queried against a proprietary gene-drug database based on peer reviewed literature to identify potential therapeutic associations.

Copy number events (amplifications/deletions) reported are focal in nature (<25mb).

Allele frequency is dependent on tumor purity. Tumor purity is not taken into account when reporting allele frequencies. Tumor Mutation Burden (TMB) is determined by measuring the number of somatic mutations occurring in sequenced genes, counting all mutations expected to change the amino acid sequence of the impacted protein. TMB results are rounded to the nearest integer and are classified as follows: TMB-High: ≥ 20 mutations per megabase (mut/Mb); TMB-Intermediate: 6-19 mut/Mb inclusive; TMB-Low: < 5 mut/Mb. "Indeterminate" results may be due to poor sample quality or sequencing coverage. MSI is calculated by scanning certain indels indicative of microsatellite instability. If the number of these, exome wide, is 25, then the sample is declared to be "MSI-High". Otherwise, the sample is labelled "MSI-Stable"

Mean target coverage for tumor sample DNA averages 440x (unique reads). Tumor sample RNA averages 121 million reads.

Immunohistochemistry:

IHC testing is performed on formalin fixed paraffin-embedded tissue (FFPE) utilizing the detection method of avidin-biotin free polymer and is employed according to an optimized protocol. HER2 testing meets the 2018 ASCO-CAP HER2 testing guidelines in breast cancer and results are reported using the ASCO/CAP scoring criteria as defined as defined in the IHC Thresholds table appearing at the end of the report. For ER and PR, historical cut-offs for all non-breast tissues are followed. The following are the antibody clones for each test: Anti HER2/neu (4B5); ER (SP1); PR (1E2).

These assays have not been validated on decalcified specimens.

External tissue controls are performed and reviewed on all stains for appropriate positive and negative immunoreactivity and found to be acceptable. If HER2 by FISH is required, it is currently being performed by PhenoPath: 1737 Airport Way S, Ste 201 Seattle, WA 98134. HER2 FISH testing and scoring by PhenoPath is being completed according to the 2018 ASCO-CAP Guidelines, with its methodology listed in their final report. A copy of the final FISH report is stored and can be provided by Exact Sciences/GHI upon request.

Limitations:

Samples with a tumor content of less than 20% may have reduced sensitivity and lead to false negative results. It is also possible that the sample contains a mutation below our established limit of detection (1% allele frequency in hotspots, 5% in other regions), or in a region excluded by our assay. Alterations present in repetitive or high GC content region or non-coding areas may not be detected. Indels larger than 40bp may not be detected. Copy number signal relative to

background noise inherent in DNA from FFPE samples may affect sensitivity of reporting amplifications/deletions. Some gene rearrangements like internal tandem duplications (ITD) involving FLT3 and BCOR may not be reliably detected by the test.

The lack of a variant call does not necessarily indicate the absence of a variant since technical limitations to acquire data in some genetic regions may limit assay detection. Given the nature of RNA isolated from FFPE, sequencing failures may be seen with highly degraded samples, as they may produce sequence reads too short to align informatically

Previously unspecified fusions cannot be called by the informatics pipeline if the partner genes occur between two closely adjacent genes on the same strand of the same chromosome. In addition, some fusions that are important in hematolymphoid malignancies, including those involving IGH, are difficult to detect with short read sequencing and may be better detected by other modalities.

Disclaimer:

This report does not make any promise or guarantee that a particular drug or treatment regimen will be effective or helpful in the treatment of disease in any patient. This report also makes no promise or guarantee that a drug with a potential clinical benefit will in fact provide a clinical benefit or that a drug with potential lack of clinical benefit will in fact provide no clinical benefit. Exact Sciences expressly disclaims and makes no representation or warranties whatsoever relating, directly or indirectly, to this review of evidence or identified scientific literature, the conclusions drawn from it or any of the information set forth in this report that is derived from such review, including information and conclusions relating to therapeutic agents that are included or omitted from this report. This assay has not been validated on decalcified tissues. Results should be interpreted with caution given the possibility of false negative results on decalcified specimens.

The tests included in this report were developed, and their performance characteristics determined by Exact Sciences. They have not been cleared or approved by the US Food and Drug Administration. The test has been validated as a Laboratory Developed Test per institutional and applicable CLIA regulation (CLIA# 03D2048606) and College of American Pathology (CAP# 8869063) as qualified to perform high complexity clinical laboratory testing. Data interpretations are based on our current understanding of genes and variants as of the report date. Alterations are listed alphabetically and not in order of strength of evidence or appropriateness for the patient's disease. When the report does identify variants with therapeutic implications, this does not promise or guarantee that a particular drug or treatment regimen will be effective or helpful in the treatment of disease in any patient, and the selection of any drug for patient treatment is done at the discretion of the treating physician.

General genomic alterations should be considered in the context of the patient's history, risk factors and any previous genomic testing. Consideration of Variants of Unknown Significance (VUS) may associate with potential therapies in the future. Exact Sciences does not update reports or send notification regarding reclassification of these alterations.

Confidential and Proprietary Information Notice:

This document is confidential and contains proprietary information and intellectual property of Exact Sciences. Any use, disclosure, or reproduction of any information in this document, other than for the treatment of the specific patient for which the information is intended, is strictly prohibited.

OncoExTra is a trademark of Genomic Health, Inc., a wholly-owned subsidiary of Exact Sciences Corporation. Exact Sciences is a registered trademark of Exact Sciences Corporation. © 2023 Genomic Health, Inc. All rights reserved.

Electronically Signed By